已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数). (I)求实数b的值; (II)求函数f(x)的单调区间; (III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x),(x∈[1e,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
(1)化简: (2)证明:
已知,求,
已知椭圆G:的右焦点F为,G上的点到点F的最大距离为,斜率为1的直线与椭圆G交与、两点,以AB为底边作等腰三角形,顶点为P(-3,2) (1)求椭圆G的方程; (2)求的面积。
分别是椭圆:+=1()的左、右焦点,是椭圆的上顶点,是直线与椭圆的另一个交点,=60°. (1)求椭圆的离心率; (2)已知△的面积为40,求a, b 的值.
已知椭圆,点在椭圆上。 (1)求椭圆的离心率; (2)若椭圆的短半轴长为,直线与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线的方程。