设函数 f ( x ) = ( x - 1 ) e x - k x 2 (其中 k ∈ R ). (Ⅰ) 当 k = 1 时,求函数 f ( x ) 的单调区间; (Ⅱ) 当 k ∈ ( 1 2 , 1 ] 时,求函数 f ( x ) 在 [ 0 , k ] 上的最大值 M .
已知函数,. (Ⅰ)若函数在区间上单调递减,求的取值范围; (Ⅱ)当时,证明.
在中,角所对的边分别为.已知. (Ⅰ)若,求的面积; (Ⅱ)求的取值范围.
如图,在三棱柱中,底面,,点是的中点. (Ⅰ)求证:; (Ⅱ)求证:∥平面. (Ⅲ)设,,在线段上是否存在点,使得?若存在,确定点的位置;若不存在,说明理由.
设等差数列的前项和为,,公差已知成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和.
已知实数数列满足:,,记集合 (Ⅰ)若,用列举法写出集合; (Ⅱ)若,判断数列是否为周期数列,并说明理由; (Ⅲ)若,且,求集合的元素个数的最小值.