如图①,在等腰直角三角形 A B C 中, ∠ A = 90 ° , B C = 6 , D , E 分别是 A C , A B 上的点, C D = B E = 2 , O 为 B C 的中点.将 △ A D E 沿 D E 折起,得到如图②所示的四棱锥 A ` - B C D E ,其中 A ` O = 3 .
(Ⅰ) 证明: A ` O ⊥ 平面 B C D E ; (Ⅱ) 求二面角 A ` - C D - B 的平面角的余弦值.
已知不等式的解集为,求不等式的解集.
已知函数f(x)=·,其中=(sinωx+cosωx,cosωx),=cosωx-sinωx,2sinωx)(ω>0),若f(x)相邻的对称轴之间的距离不小于. (1)求ω的取值范围; (2)在△ABC中,a,b,c分别为A,B,C的对边,a=,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.
在△ABC中,角A、B、C所对边分别为a,b,c,已知,且最长边的边长为l.求: (I)角C的大小; (II)△ABC最短边的长.
解关于的不等式:
(本小题12分) 如图,曲线是以原点为中心,以、为焦点的椭圆的一部分,曲线是以为顶点,以为焦点的抛物线的一部分,是曲线和的交点,且为钝角,若,. (I)求曲线和所在的椭圆和抛物线的方程; (II)过作一条与轴不垂直的直线,分别与曲线、依次交于、、、四点(如图),若为的中点,为的中点,问是否为定值?若是,求出定值;若不是,请说明理由.