如图①,在等腰直角三角形 A B C 中, ∠ A = 90 ° , B C = 6 , D , E 分别是 A C , A B 上的点, C D = B E = 2 , O 为 B C 的中点.将 △ A D E 沿 D E 折起,得到如图②所示的四棱锥 A ` - B C D E ,其中 A ` O = 3 .
(Ⅰ) 证明: A ` O ⊥ 平面 B C D E ; (Ⅱ) 求二面角 A ` - C D - B 的平面角的余弦值.
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题.(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)根据频率分布直方图,估计本次考试的平均分;(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。
已知数列{}中(I)设,求证数列{}是等比数列;(Ⅱ)求数列{}的通项公式.
设函数。(1)求不等式的解集;(2)若存在x使不等式成立,求实数a的取值范围。
在直角坐标系xOy中,已知点P,曲线C的参数方程为(φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为。(1)判断点P与直线l的位置关系,说明理由;(2)设直线l与直线C的两个交点为A、B,求的值。
如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D。(1)求证:CE2 = CD · CB;(2)若AB = BC = 2,求CE和CD的长。