如图①,在等腰直角三角形 A B C 中, ∠ A = 90 ° , B C = 6 , D , E 分别是 A C , A B 上的点, C D = B E = 2 , O 为 B C 的中点.将 △ A D E 沿 D E 折起,得到如图②所示的四棱锥 A ` - B C D E ,其中 A ` O = 3 .
(Ⅰ) 证明: A ` O ⊥ 平面 B C D E ; (Ⅱ) 求二面角 A ` - C D - B 的平面角的余弦值.
求经过点(1,-7)与圆x2+y2=25相切的切线方程.
直线l经过点P(5,5),且和圆C:x2+y2=25相交,截得弦长为45,求l的方程.
已知直线l:2x-y-1=0与圆C:x2+y2-2y-1=0相交于A、B两点,求弦长AB.
m为何值时,直线x+2y-3=0与圆x2+y2+x-6y+m=0相离?
b为何值时,直线x-3y+b=0与圆x2+y2-6Mx-2(M-1)y+10M2-2M-24=0相交,相切,相离?