如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点. (1)求证:BD⊥FG; (2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由. (3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
(本小题满分12分)已知数列{an}的第一项a1=5且Sn-1=an(n≥2,n∈N*),Sn为数列{an}的前n项和.(1)求a2,a3,a4,并由此猜想an的表达式;(2)用数学归纳法证明{an}的通项公式.
(本小题满分12分)设函数,其中a∈R.已知f(x)在x=3处取得极值.(1)求f(x)的解析式;(2)求f(x)在点A(1,16)处的切线方程.
(本小题满分10分)已知复数.(Ⅰ)当实数取什么值时,复数是纯虚数;(Ⅱ)当时,化简.
(本小题满分12分)已知黄河游览区有两艘游船,两艘游船每天上午11点出发,下午3点至5点之间返回码头,假如码头只有一个泊位,每艘游船需要停靠码头15分钟游客下完后即驶离码头,每艘油船返回时在下午3点至5点之间的任何一时刻停靠码头是等可能的,求你乘坐一艘游船游览黄河游览区,下午返回码头时,停船的泊位是空的概率。
(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4的四张卡片,现从甲、乙两个盒子中各取出1张卡片,每张卡片被取出的可能性相等;(Ⅰ)求取出的两张卡片标号之积能被3整除的概率;(Ⅱ)如果小王、小李取出的两张卡片的标号相加,谁的两张卡片标号之和大则谁胜出,若小王先抽,抽出卡片的标号分别为3和4,且小王抽出的两张卡片不再放回盒中,小李再抽;求小王胜出的概率。