某小区要建一座八边形的休闲小区,它的主体造型的平面图是由二个相同的矩形和构成的面积为的十字型地域,计划在正方形上建一座“观景花坛”,造价为元/,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为元/,再在四个空角(如等)上铺草坪,造价为元/.(1)设总造价为元,长为,试建立与的函数关系;(2)当为何值时,最小?并求这个最小值。
(本小题满分14分)已知,,点的坐标为 (1)当时,求的坐标满足的概率。 (2)当时,求的坐标满足的概率。
(本小题满分12分)如图,在平面四边形中,是正三角形,,. (Ⅰ)将四边形的面积表示成关于的函数; (Ⅱ)求的最大值及此时的值.
(本小题满分12分)已知直线经过点,,直线经过点,。 (1)若,求的值。 (2)若,求的值。
定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f(x)=. (Ⅰ)求f(x)在[-1, 1]上的解析式;(Ⅱ)证明f(x)在(0, 1)上时减函数; (Ⅲ)当λ取何值时, 方程f(x)=λ在[-1, 1]上有解?
定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y). (1)求证f(x)为奇函数; (2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.