(本题满分12分)在某次射击比赛中共有5名选手,出场时甲、乙、丙三人不能相邻。求(1)共有多少种不同的出场顺序?(2)若甲、乙、丙三人每次射击命中目标的概率都为0.6,求三人各射击一次至少有一 人命中目标的概率。(3)若甲、乙、丙三人每次射击命中目标的概率分别为0.7,0.6,0.5,求三人各射击一次至少有两人命中目标的概率。
(本小题满分12分)设函数,,(1)若,求取值范围; (2)求的最值,并给出最值时对应的x的值。
(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD
(本小题满分12分)已知两直线l1:x+my+6=0 l2:(m-2)x+3my+2m=0当m为何值时,l1与l2:(1)平行;(2)垂直;
(本小题满分10分) 已知P(3,2),一直线过点P,①若直线在两坐标轴上截距之和为12,求直线的方程;②若直线与x、y轴正半轴交于A、B两点,当面积为12时求直线的方程.
已知函数在处的切线与直线平行.(1)求实数的值;(2)若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;(3)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.