袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球.甲先取,乙后取,然后甲再取…取后不放回,每人最多取两次,若两人中有一人首先取到白球时则终止,每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数;(2)求甲取到白球的概率;(3)求取球4次终止的概率.
已知双曲线的右焦点与抛物线的焦点重合,求该双曲线的焦点到其渐近线的距离.
已知动圆与直线相切,且与定圆 外切,求动圆圆心的轨迹方程.
如图,在平行六面体中,,,,,,是的中点,设,,.(1)用表示;(2)求的长.
已知圆及点.(1)在圆上,求线段的长及直线的斜率;(2)若为圆上任一点,求的最大值和最小值;(3)若实数满足,求的最大值和最小值.
已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,求:(1)动点M的轨迹方程;(2)若N为线段AM的中点,试求点N的轨迹.