(本小题满分14分)某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率.
已知函数. (1)当时,解不等式; (2)当时,恒成立,求的取值范围.
已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,,曲线的参数方程为.点是曲线上两点,点的极坐标分别为. (1)写出曲线的普通方程和极坐标方程; (2)求的值.
如图所示,为圆的切线,为切点,,的角平分线与和圆分别交于点和. (1)求证(2)求的值.
已知,函数. (1)如果时,恒成立,求m的取值范围; (2)当时,求证:.
已知点点分别是轴和轴上的动点,且,动点满足,设动点的轨迹为E. (1)求曲线E的方程; (2)点Q(1,a),M,N为曲线E上不同的三点,且,过M,N两点分别作曲线E的切线,记两切线的交点为,求的最小值.