已知为坐标原点,为椭圆在轴正半轴上的焦点,过且斜率为的直线与交与、两点,点满足(Ⅰ)证明:点在上;(Ⅱ)设点关于点的对称点为,证明:、、、四点在同一圆上。
已知,求的值.
已知函数在[1,+∞)上为增函数,且,,∈R.(1)求θ的值;(2)若在[1,+∞)上为单调函数,求m的取值范围;(3)设,若在[1,e]上至少存在一个,使得成立,求的取值范围.
如图,在三棱拄中,侧面,已知AA1=2,,.(1)求证:;(2)试在棱(不包含端点上确定一点的位置,使得;(3)在(2)的条件下,求二面角的平面角的正切值.
如果甲乙两个乒乓球选手进行比赛,而且他们在每一局中获胜的概率都是,规定使用“七局四胜制”,即先赢四局者胜.(1)试分别求甲打完4局、5局才获胜的概率;(2)设比赛局数为ξ,求ξ的分布列及期望.
在中,为锐角,角所对的边分别为,且(I)求的值;(II)若,求的值.