如图,在等腰梯形ABCD中,AB∥DC,AB = 4,CD = 2,等腰梯形的高为3,O为AB中点,PO⊥平面ABCD,垂足为O,PO = 2,EA∥PO.(1)求证:BD⊥平面EAC;(2)求二面角E—AC—P的平面角的余弦值.
已知圆C:,直线l:. (1)证明:不论m取什么实数时,直线l与圆恒交于两点; (2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.
数列{an}中,a1 = 1,当时,其前n项和满足 (1)求Sn的表达式; (2)设,数列{bn}的前n项和为Tn,求Tn.
已知函数为常数). (1)求函数的最小正周期; (2)求函数的单调递增区间; (3)若时,的最小值为– 2 ,求a的值.
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线. (Ⅰ)求椭圆的方程; (Ⅱ)过点的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
设函数,,函数的图象与轴的交点也在函数的图象上,且在此点有公共切线. (Ⅰ)求、的值; (Ⅱ)对任意的大小.