如图,在正方体 中, 是底面正方形 的中心, 是线段 的中点. (1)证明: //平面 ; (2)异面直线 AC与 A 1D所成的角;
已知p:是的反函数,且;q:集合,B =" {" x | x >0},且AB=.求实数a的取值范围,使“p或q”为真命题,“p且q”为假命题.
已知;若是的必要非充分条件,求实数的取值范围。
(高考真题)已知数列{an}满足a1=1,an+1=3an+1.(1)证明是等比数列,并求{an}的通项公式;(2)证明++…+<.
(有难度哦)给定有限单调递增数列且,定义集合且.若对任意点,存在点使得(为坐标原点),则称数列具有性质.(Ⅰ)判断数列:和数列:是否具有性质,简述理由.(Ⅱ)若数列具有性质,求证:①数列中一定存在两项使得;②若,且,则.
已知数列{an}的前n项和Sn满足Sn+1=kSn+2(n∈N*),且a1=2,a2=1.(1)求k的值和Sn的表达式;(2)是否存在正整数m,n,使得<成立?若存在,求出这样的正整数;若不存在,请说明理由.