(本小题满分12分) 如图,在三棱锥A-BCD中,侧面ABD、 ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1) 求证:AD^BC; (2) 求二面角B-AC-D的大小; (3) 在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由
直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.
求过点A(5,2),且在坐标轴上截距互为相反数的直线l的方程.
过点P(1,4)引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线的方程.
求经过点A(2,m)和B(n,3)的直线方程.
已知实数x、y满足(x-2)2+(y-1)2=1,求z=的最大值与最小值.