(本小题满分12分) 如图,在三棱锥A-BCD中,侧面ABD、 ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1) 求证:AD^BC; (2) 求二面角B-AC-D的大小; (3) 在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由
已知函数,其中.设,若,且.(1)求的值;(2)求函数的图像在点处的切线方程.
已知曲线的极坐标方程为:,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线经过点且倾斜角为.(1)写出直线的参数方程和曲线的普通方程;(2)设直线与曲线相交于两点,求的值.
已知的解为条件,关于的不等式的解为条件.(Ⅰ)若是的充分不必要条件时,求实数的取值范围.(Ⅱ)若是的充分不必要条件时,求实数的取值范围.
如图所示,作斜率为的直线与抛物线相交于不同的两点B、C,点A(2,1)在直线的右上方.(Ⅰ)求证:△ABC的内心在直线x=2上;(Ⅱ)若,求△ABC内切圆的半径.
椭圆,椭圆的一个焦点坐标为,斜率为的直线与椭圆相交于两点,线段的中点的坐标为.(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上一点,点在椭圆上,且,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.