(本小题满分12分)已知椭圆的左、右焦点分别为、,其中也是抛物线的焦点,M是与在第一象限的交点,且.(Ⅰ)求椭圆的方程;(Ⅱ)已知菱形ABCD的顶点A﹑C在椭圆上,顶点B﹑D在直线上,求直线AC的方程.
如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON
已知函数f(x)=-x+3x+9x+a ⑴求f(x)的单调递减区间;⑵若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值。
过椭圆+=1内一点M(2,1)引一条弦,使弦被M点平分,求此弦所在直线方程。
设双曲线与椭圆+=1有公共的焦点,且与椭圆相交,它们的交点中一个交点的纵坐标是4,求双曲线的标准方程。
已知f(x)=(x+1)(x-1)(x+2),求f′(x),f′(2),[f(2)]′