设AB是圆x2+y2=1的一条直径,以AB为直角边、B为直角顶点,逆时针方向作等腰直角三角形ABC.当AB变动时,求C点的轨迹.
(本小题满分12分)函数,若曲线在点处的切线与直线垂直(其中为自然对数的底数).(1)若在上存在极值,求实数的取值范围;(2)求证:当时,.
(本小题满分12分)椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.
(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.
(本小题满分12分)甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为、、,乙袋中红色、黑色、白色小球的个数均为,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求的分布列和数学期望.
(本小题满分12分)在锐角三角形中,、、分别是角、、的对边,且.(1)求角的大小;(2)若,求的最大值.