(本小题满分12分)已知函数(Ⅰ)若函数在上是减函数,求实数的取值范围;(Ⅱ)令,是否存在实数,使得当时,函数的最小值是?若存在,求出实数的值;若不存在,说明理由.(Ⅲ)当时,证明.
已知函数,(且)恒过定点, (1)求实数; (2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式; (3)对于定义在的函数,若在其定义域内,不等式恒成立,求的取值范围.
设函数,其中. (1)若,的定义域为区间,求的最大值和最小值; (2)若的定义域为区间(0,+∞),求的取值范围,使在定义域内是单调减函数.
正方体中. (1)求证:平面平面; (2)若分别是的中点,求证:平面平面.
已知函数(,且). (1)求函数的定义域和值域; (2)若函数有最小值为,求的值.
如图,在正方体中,为上不同于的任一点, ,求证: (1)平面;(2).