已知关于的方程有实数根(1)求实数的值(2)若复数满足,求为何值时,有最小值,并求出的值。
(本小题满分14分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到DA1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)(Ⅰ)求证:A1E⊥平面BEP;(Ⅱ)求直线A1E与平面A1BP所成角的大小。
(本小题满分14分)设数列的前项和为,已知,(1)令求证:是等比数列;(2)令,设是数列的的前项和,求满足不等式的的最小值。
(本小题满分14分)已知函数,其中(1)求函数在区间上的单调递增区间和值域;(2)在中,,,分别是角的对边, ,且的面积,求边的值.
已知的三个顶点在抛物线上,是抛物线的焦点,且,.(Ⅰ)求抛物线的方程;(Ⅱ)若直线与上述抛物线相交于点,直线过点且与处的切线垂直. 求证:直线关于直线的对称直线经过定点.
设函数.(Ⅰ)若函数在上单调递增,在上单调递减,求实数的最大值;(Ⅱ)若对任意的,都成立,求实数的取值范围.注:为自然对数的底数.