(本小题满分14分)已知函数的图象在上连续不断,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.(Ⅰ)若,,试写出,的表达式;(Ⅱ)已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由;(Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
已知函数. (Ⅰ)求函数的最小正周期和值域; (Ⅱ)若为第二象限角,且,求的值.
已知函数f(x)=,其中a>0. (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为 (1)求椭圆方程; (2)若直线:与轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.
已知数列为等差数列,且 (Ⅰ)求数列的通项公式; (Ⅱ)证明
如图所示,多面体中,是梯形,,是矩形,平面平面,,. (1)求证:平面; (2)若是棱上一点,平面,求; (3)求二面角的平面角的余弦值.