(本题满分14分,其中第1小题8分,第2小题6分)一企业生产的某产品在不做电视广告的前提下,每天销售量为件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量(件)与电视广告每天的播放量(次)的关系可用如图所示的程序框图来体现.(1)试写出该产品每天的销售量(件)关于电视广告每天的播放量(次)的函数关系式;(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加,则每天电视广告的播放量至少需多少次?
(本小题满分12分)贵阳六中织高二年级4个班的学生到益佰制药厂、贵阳钢厂、贵阳轮胎厂进行社会实践,规定每个班只能在这3个厂中任选择一个,假设每个班选择每个厂的概率是等可能的。(Ⅰ)求3个厂都有班级选择的概率;(Ⅱ)用表示有班级选择的厂的个数,求随机变量的概率分布及数学期望。
(本小题满分12分)已知向量且,(Ⅰ)若与是两个共线向量,求的值; (Ⅱ)若,求函数的最小值及相应的的值。
(理)(本小题共14分)已知函数 (1)若时,函数在其定义域内是增函数,求b的取值范围 (2)在(1)的结论下,设函数,求函数的最小值;(3)设函数的图象C1与函数的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由。
(理)(本小题满分14分) 已知数列满足 (Ⅰ)求;(Ⅱ)已知存在实数,使为公差为的等差数列,求的值;(Ⅲ)记,数列的前项和为,求证:.
(本小题共13分)已知动圆过定点,且与直线相切.(1)求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.