(本小题满分12分)已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为.(1)求椭圆G的方程;(2)求的面积.
设为数列的前项和,对任意的,都有为常数,且.(1)求证:数列是等比数列;(2)设数列的公比,数列满足,,求数列的通项公式;(3)在满足(2)的条件下,求数列的前项和.
已知函数的定义域为,且,,当,且,时恒成立.(1)判断在上的单调性;(2)解不等式;(3)若对于所有,恒成立,求的取值范围.
已知点、,若动点满足.(1)求动点的轨迹曲线的方程;(2)在曲线上求一点,使点到直线:的距离最小.
在如图所示的几何体中,是边长为的正三角形,,平面,平面平面,,且.(1)证明://平面;(2)证明:平面平面;(3)求该几何体的体积.
甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的次预赛成绩记录如下: 甲 乙 (1)用茎叶图表示这两组数据;(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?