(本小题满分12分)已知函数(1)若是定义域上的单调函数,求的取值范围;(2)若在定义域上有两个极值点、,证明:
在中,已知,求角的大小.
(本小题满分12分)已知函数在内有极值.(Ⅰ)求实数的取值范围;(Ⅱ)若,且时,求证:.
(本小题满分12分)在平面直角坐标系中,已知定点、,为动点,且直线与直线的斜率之积为,设动点的轨迹为曲线.(Ⅰ)求曲线的方程;(Ⅱ)过定点的动直线与曲线交于、两点,是否存在定点,使得为定值,若存在求出的值;若不存在请说明理由.
(本小题满分12分) 如图,在多面体ABCDEF中, ABCD为菱形,,EC面ABCD, FA面ABCD,G为BF的中点,若EG//面ABCD.(Ⅰ)求证:EG面ABF;(Ⅱ)若,求二面角B-EF-D 的余弦值.
某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入(x2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入x万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总收入之和?并求出此时商品的每件定价.