(本小题满分12分)甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹).(1)如果甲只射击次,求在这一枪出现空弹的概率;(2)如果甲共射击次,求在这三枪中出现空弹的概率; (3)如果在靶上画一个边长为的等边,甲射手用实弹瞄准了三角形区域随机射击,且弹孔都落在三角形内。求弹孔与三个顶点的距离都大于1的概率(忽略弹孔大小).
(本题14分)设数列是首项为,公差为的等差数列,其前项和为,且成等差数列. (Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,求.
(本题14分)向量,设函数. (1)求的最小正周期与单调递减区间; (2)在中,分别是角的对边,若的面积 为,求a的值.
(本题满分15分 )已知函数. (1)求函数的最大值; (2)若,不等式恒成立,求实数的取值范围; (3)若,求证:.
(本题满分15分 )已知椭圆经过点,一个焦点是. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆与轴的两个交点为、,点在直线上,直线、分别与椭圆交于、两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.
(本题满分14分 )已知函数 (1)求的值; (2)已知数列,求证数列是等差数列; (3)已知,求数列的前n项和.