(本题满分15分 )已知椭圆经过点,一个焦点是.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与轴的两个交点为、,点在直线上,直线、分别与椭圆交于、两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.
已知函数在区间上有且只有一个零点,求实数的取值范围。
已知为公差不为零的等差数列,首项,的部分项、、 、恰为等比数列,且,,. (1)求数列的通项公式; (2)若数列的前项和为,求.
如图,某单位准备修建一个面积为600平方米的矩形场地(图中)的围墙,且要求中间用围墙隔开,使得为矩形,为正方形,设米,已知围墙(包括)的修建费用均为800元每米,设围墙(包括)的修建总费用为元。 (1)求出关于的函数解析式; (2)当为何值时,设围墙(包括)的的修建总费用最小?并求出的最小值。
某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取名学生的数学成绩, 制成下表所示的频率分布表. (1)求,,的值; (2)若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2名与张老师面谈,求第三组中至少有名学生与张老师面谈的概率.
在中,角、、的对边分别为、、,且,.(1) 求的值; (2) 设函数,求的值.