(本小题满分14分)设函数。(I)求函数的单调区间、极大值和极小值。(II)若时,恒有,求实数的取值范围。
(本小题满分12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1) 求n的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标为b. 记事件A表示“a+b=2”,求事件A的概率.
(本小题满分为12分)已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值和最小值.
(本小题满分12分)已知向量,向量,函数.(Ⅰ)求的最小正周期;(Ⅱ)已知,,分别为内角,,的对边,为锐角,,且恰是在, 上的最大值,求,和的面积.
(本小题满分14分)已知 , 函数.(Ⅰ)求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的斜率为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
(本小题满分12分)给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(Ⅰ)求椭圆的方程和其“准圆”方程.(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点;(1)当为“准圆”与轴正半轴的交点时,求的方程.(2)求证:为定值.