(本小题满分14分)如图,在三棱柱中,侧面底面ABC,,,且为AC中点.(I)证明:平面ABC;(II)求直线与平面所成角的正弦值;(III)在上是否存在一点E,使得平面,若不存在,说明理由;若存在,确定点E的位置.
设抛物线 C : y 2 = 2 x ,点 A 2 , 0 , B - 2 , 0 ,过点 A 的直线 l 与 C 交于 M , N 两点.
(1)当 l 与 x 轴垂直时,求直线 BM 的方程;
(2)证明: ∠ ABM = ∠ ABN .
某家庭记录了未使用节水龙头 50 天的日用水量数据(单位: m 3 )和使用了节水龙头 50 天的日用水量数据,得到频数分布表如下:
未使用节水龙头 50 天的日用水量频数分布表
日用水量
[ 0 , 0 . 1 )
[ 0 . 1 , 0 . 2 )
[ 0 . 2 , 0 . 3 )
[ 0 . 3 , 0 . 4 )
[ 0 . 4 , 0 . 5 )
[ 0 . 5 , 0 . 6 )
[ 0 . 6 , 0 . 7 )
频数
1
3
2
4
9
26
5
使用了节水龙头 50 天的日用水量频数分布表
13
10
16
(1)在答题卡上作出使用了节水龙头 50 天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于 0 . 35 m 3 的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
如图,在平行四边形 ABCM 中, AB = AC = 3 , ∠ ACM = 90 ° ,以 AC 为折痕将△ ACM 折起,使点 M 到达点 D 的位置,且 .
(1)证明:平面 ACD ⊥ 平面 ABC ;
(2) Q 为线段 AD 上一点, P 为线段 BC 上一点,且 ,求三棱锥 的体积.
已知数列 a n 满足 a 1 = 1 , n a n + 1 = 2 n + 1 a n ,设 b n = a n n .
(1)求 b 1 , b 2 , b 3 ;
(2)判断数列 b n 是否为等比数列,并说明理由;
(3)求 a n 的通项公式.
设函数 f ( x ) = 5 - x + a - x - 2 .
(1)当 a = 1 时,求不等式 f ( x ) ≥ 0 的解集;
(2)若 f ( x ) ≤ 1 恒成立,求 a 的取值范围.