如图,在平行四边形 ABCM 中, AB = AC = 3 , ∠ ACM = 90 ° ,以 AC 为折痕将△ ACM 折起,使点 M 到达点 D 的位置,且 .
(1)证明:平面 ACD ⊥ 平面 ABC ;
(2) Q 为线段 AD 上一点, P 为线段 BC 上一点,且 ,求三棱锥 的体积.
已知椭圆:经过点,. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左、右焦点分别为,过点的直线交椭圆于两点,求面积的最大值.
已知抛物线的焦点为,过点的直线交抛物线于点,. (Ⅰ)若(点在第一象限),求直线的方程; (Ⅱ)求证:为定值(点为坐标原点).
已知函数,且是函数的一个极小值点. (Ⅰ)求实数的值; (Ⅱ)求在区间上的最大值和最小值.
已知曲线:. (1)若曲线是焦点在轴上的椭圆,求的取值范围; (2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.
已知函数. (1)当时,的图象在点处的切线平行于直线,求的值; (2)当时,在点处有极值,为坐标原点,若三点共线,求的值.