在三棱锥中,侧棱两两垂直,△,△,△的面积分别为,,,求三棱锥外接球的表面积
(本小题满分10分) (1)解不等式 (2)设x,y,z且,求的最小值.
本小题满分10分) 已知直线l经过点P(,1),倾斜角,在极坐标系下,圆C的极坐标方程为。 (1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程; (2)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积。
(本小题满分10分) 如图,四边形ACBD内接于圆O,对角线AC与BD相交于M, AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于H, 求证:(1)EF⊥AB(2)OH=ME
(本小题满分12分)设函数 (1)若; (2)若
(本小题满分12分) 抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且。 (1) 求抛物线方程; (2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.