椭圆的长轴长为4,焦距为2,F1、F2分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点(1)求椭圆的标准方程和动点的轨迹的方程。(2)过椭圆的右焦点作斜率为1的直线交椭圆于A、B两点,求的面积。(3)设轨迹与轴交于点,不同的两点在轨迹上,满足求证:直线恒过轴上的定点。
在△ABC中,角,,所对的边分别为,,c.已知. (1)求角的大小; (2)设,求T的取值范围.
如图,在四棱锥中,底面是矩形,四条侧棱长均相等. (1)求证:平面; (2)求证:平面平面.
已知函数. (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)求函数的单调区间; (Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.
已知椭圆的中心在原点,焦点在轴上,一个顶点为,且其右焦点到直线的距离为3. (Ⅰ)求椭圆方程; (Ⅱ)设直线过定点,与椭圆交于两个不同的点,且满足. 求直线的方程.
已知等比数列的所有项均为正数,首项=1,且成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)数列{}的前项和为,若=,求实数的值.