已知函数 f x = A sin x + φ a > 0 , 0 < φ < π , x ∈ R 的最大值是 1 ,其图像经过点 M π 3 , 1 2 。
(1)求 f x 的解析式;
(2)已知 α , β ∈ 0 , π 2 ,且 f α = 3 5 , f β = 12 13 ,求 f α - β 的值。
(本小题满分14分) 已知向量, 向量, 且, 动点的轨迹为E. (1)求轨迹E的方程; (2)证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B, 且(O为坐标原点),并求出该圆的方程;
(本小题满分14分) 如图,过抛物线上一点P(),作两条直线分别交抛物线于A(),B().直线PA与PB的斜率存在且互为相反数,(1)求的值,(2)证明直线AB的斜率是非零常数.
(本小题满分14分) 已知动圆经过点,且与圆内切. (1)求动圆圆心的轨迹的方程;(2)求轨迹E上任意一点到定点B(1,0)的距离的最小值,并求取得最小值时的点M的坐标.
(本小题满分14分) (1)掷两颗骰子,其点数之和为4的概率是多少? (2)甲、乙两人约定上午9点至12点在某地点见面,并约定任何一个人先到之后等另一个人不超过一个小时,一小时之内如对方不来,则离去。如果他们二人在8点到12点之间的任何时刻到达约定地点的概率都是相等的,求他们见到面的概率。
(本小题满分12分) 已知圆经过点A(2,-3)和B(-2,-5). (1)若圆心在直线x-2y-3=0上,求圆的方程. (2)若圆的面积最小,求圆的方程;