设抛物线的焦点为,准线为,,以为圆心的圆与相切于点,的纵坐标为,是圆与轴除外的另一个交点.(I)求抛物线与圆的方程;( II)已知直线,与交于两点,与交于点,且, 求的面积.
若圆C经过点和,且圆心C在直线上,求圆C的方程.
已知命题p:方程有两个不相等的实根; 命题q:不等式的解集为R; 若p∨q为真,p∧q为假,求实数m的取值范围。
已知,α和β为锐角. (Ⅰ)若tan(α+β)=2+,求β; (Ⅱ)若tantanβ=2-,满足条件的α和β是否存在?若存在,请求出α和β的值,若不存在,请说明理由.
已知向量,向量与向量的夹角为,且. (Ⅰ)求向量; (Ⅱ)设向量向量,其中,若,试求的取值范围.
某中学举行了一次“上海世博会知识竞赛”,从全校参加竞赛的学生的试卷中,随机抽取了一个样本,考察竞赛的成绩分布(得分均为整数,满分100分),将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为1:3:6:4:2,最右边一组的频数是6.请结合直方图提供的信息,解答下列问题: (Ⅰ)样本容量是多少?(Ⅱ)成绩落在那个范围内的人数最多?并求该小组的频数、频率;(Ⅲ)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.