如图,在中,,是边上的高,是边上的一个动点(不与重合),,,垂足分别为.(1)求证:;(2)与是否垂直?若垂直,请给出证明;若不垂直,请说明理由;(3)当时,为等腰直角三角形吗?并说明理由.
(本小题满分8分) 已知圆的半径为,圆心在直线上,圆被直线截得的弦长为,求圆的方程.
(本小题满分8分) 如图,已知点是平行四边形所在平面外的一点,,分别是,上的点且,求证:平面.
(本小题满分8分) 将圆心角为1200,面积为3的扇形,作为圆锥的侧面,求圆锥的表面积和体积.
设,函数. (Ⅰ)证明:存在唯一实数,使; (Ⅱ)定义数列:,,. (i)求证:对任意正整数n都有; (ii) 当时,若, 证明:当k时,对任意都有:
已知函数(,实数,为常数). (Ⅰ)若,求函数的极值; (Ⅱ)若,讨论函数的单调性.