田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B、C,田忌的三匹马分别为a、b、c;三匹马各比赛一次,胜两场者为获胜。若这六匹马比赛优、劣程度可以用以下不等式表示: (1)正常情况下,求田忌获胜的概率(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率
设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2. (1)求a的值及f(x)的定义域. (2)求f(x)在区间上的最大值.
已知函数f(x)=3x-. (1)若f(x)=2,求x的值; (2)判断x>0时,f(x)的单调性; (3)若3tf(2t)+mf(t)≥0对于t∈恒成立,求m的取值范围.
设a>0且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.
已知函数f(x)=ax2-2ax+2+b(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2. (1)求a,b的值; (2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.
已知幂函数f(x)=x(m2+m)-1(m∈N*),经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.