已知向量,,,(1)若点、、能构成三角形,求实数应满足的条件;(2)若为直角三角形,且为直角,求实数的值
在直角坐标系中,点到两点,的距离之和等于,设点的轨迹为。 (1)求曲线的方程; (2)过点作两条互相垂直的直线分别与曲线交于和。 ①以线段为直径的圆过能否过坐标原点,若能求出此时的值,若不能说明理由; ②求四边形面积的取值范围。
如图,在四棱锥中,底面为平行四边形,平面,在棱上. (I)当时,求证平面 (II)当二面角的大小为时,求直线与平面所成角的正弦值.
(本小题12分) 给定抛物线,是抛物线的焦点,过点的直线与相交于、两点,为坐标原点. (Ⅰ)设的斜率为1,求以为直径的圆的方程; (Ⅱ)设,求直线的方程.
已知关于x的二次函数 (1)设集合和,从集合中随机取一个数作为,从中随机取一个数作为,求函数在区间上是增函数的概率; (2)设点是区域内的随机点,求函数在区间上是增函数的概率。
(本小题12分) 设△ABC的内角A,B,C所对的边长分别为a,b,c,且. (Ⅰ)求角的大小; (Ⅱ)若角,边上的中线的长为,求的面积.