已知点,,在抛物线()上,的重心与此抛物线的焦点F重合(如图)(1)写出该抛物线的方程和焦点F的坐标; (2)求线段BC中点M的坐标;(3)求BC所在直线的方程.
(本小题满分14分) 已知是定义在上的偶函数,当时,. (1)求函数的解析式; (2)若不等式的解集为,求的值.
(本小题满分12分) 如图,已知圆锥的轴截面ABC是边长为的正三角形,O是底面圆心. (1)求圆锥的表面积; (2)经过圆锥的高的中点作平行于圆锥底面的截面,求截得的圆台的体积.
(本小题满分12分) 设函数的定义域为集合,不等式的解集为集合. (1)求集合,; (2)求集合,.
已知都是正数,且成等比数列,求证:
已知曲线C1的极坐标方程为,曲线C2的极坐标方程为,曲线C1,C2相交于A,B两点 (I)把曲线C1,C2的极坐标方程转化为直角坐标方程; (II)求弦AB的长度.