某商品每件成本9元,售价30元,每星期卖出432件。如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比。已知商品单价降低2元时,一个星期多卖出24件。(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?
已知向量a=,b=,且x∈.(1)求a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值为-,求正实数λ的值.
若复数z1与z2在复平面上所对应的点关于y轴对称,且z1(3-i)=z2(1+3i),|z1|=,求z1.
A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(-2,0),平行四边形OAQP的面积为S.(1)求·+S的最大值;(2)若CB∥OP,求sin的值.
已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,C=,求△ABC的面积.
已知分别是椭圆的左,右顶点,点在椭圆 上,且直线与直线的斜率之积为.(1)求椭圆的标准方程;(2)点为椭圆上除长轴端点外的任一点,直线,与椭圆的右准线分别交于点,.①在轴上是否存在一个定点,使得?若存在,求点的坐标;若不存在,说明理由;②已知常数,求的取值范围.