已知分别是椭圆的左,右顶点,点在椭圆 上,且直线与直线的斜率之积为.(1)求椭圆的标准方程;(2)点为椭圆上除长轴端点外的任一点,直线,与椭圆的右准线分别交于点,.①在轴上是否存在一个定点,使得?若存在,求点的坐标;若不存在,说明理由;②已知常数,求的取值范围.
如图1,在直角梯形中,,,, 点为中点.将沿折起, 使平面平面,得到几何体,如图2所示. (1)在上找一点,使平面; (2)求点到平面的距离.
(本小题满分12分)在中,内角的对边分别为,且. (Ⅰ)求角的大小; (Ⅱ)若,求的值.
(本小题满分10分)选修4-5:不等式选讲 已知,且,若恒成立, (1)求的最小值; (2)若对任意的恒成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数. (1)将曲线的极坐标方程化为直角坐标方程; (2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.
(本小题满分10分)选修4—1:几何证明选讲 如图所示,PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分线与BC和圆O分别交于点D和E. (1)求证:; (2)求AD·AE的值.