(本小题共14分)已知椭圆的离心率为(I)若原点到直线的距离为求椭圆的方程;(II)设过椭圆的右焦点且倾斜角为的直线和椭圆交于A,B两点.(i)当,求b的值;(ii)对于椭圆上任一点M,若,求实数满足的关系式.
已知实数,函数。(1)当时,讨论函数的单调性;(2)若在区间上是增函数,求实数的取值范围;(3)若当时,函数图象上的点均在不等式,所表示的平面区域内,求实数 的取值范围。
已知()是曲线上的点,,是数列的前项和,且满足,, .(1)证明:数列()是常数数列;(2)确定的取值集合,使时,数列是单调递增数列;(3)证明:当时,弦()的斜率随单调递增
已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.(1)求椭圆的方程;(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q. (1)将tanq表示为x的函数; (2)求点D的位置,使q取得最大值.
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.(1)求证:MQ∥平面PAB;(2)若AN⊥PC,垂足为N,求证:MN⊥PD.