已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.(1)求椭圆的方程;(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.
已知椭圆()的离心率为,.分别为椭圆的左.右焦点,若椭圆的焦距为. (1)求椭圆的方程; (2)设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求面积的最大值.
在正四面体中,点在上,点在上,且. 证明:(1)平面; (2)直线直线.
已知函数(,). (1)若,求函数的单调增函数; (2)若时,函数的最大值为,最小值为,求,的值.
将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C的参数方程; (2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
已知函数(为实常数) . (1)求的单调区间; (2)当时,讨论方程根的个数. (3)若,且对任意的,都有,求实数a的取值范围.