某学校拟建一座长米,宽米的长方形体育馆.按照建筑要求,每隔米需打建一个桩位,每个桩位需花费万元(桩位视为一点且打在长方形的边上),桩位之间的米墙面需花万元,在不计地板和天花板的情况下,当为何值时,所需总费用最少?
(本小题满分12分)如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示. (Ⅰ)求证:平面; (Ⅱ)求出该几何体的体积; (Ⅲ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置;若不存在,请说明理由.
(本小题满分12分)某校为进行爱国主义教育,在全校组织了一次有关钓鱼岛历史知识的竞赛.现有甲、乙两队参加钓鱼岛知识竞赛,每队3人,规定每人回答一个问题,答对为本队赢得1分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响,用ξ表示甲队的总得分. (Ⅰ)求随机变量ξ的分布列和数学期望; (Ⅱ)用表示“甲、乙两个队总得分之和等于3”这一事件,用表示“甲队总得分大于乙队总得分” 这一事件,求.
(本小题满分12分)已知向量,,函数. (Ⅰ)求函数f (x)的最小正周期和单调递减区间; (Ⅱ)在中,,,分别是角,,的对边,且,,的面积为,且a > b,求的值.
(本小题满分14分)已知函数. (Ⅰ)求证:曲线在点处的切线在轴上的截距为定值; (Ⅱ)若时,不等式恒成立,求实数的取值范围.
(本小题满分12分)已知椭圆:与抛物线:有相同焦点. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知直线过椭圆的另一焦点,且与抛物线相切于第一象限的点,设平行的直线交椭圆于两点,当△面积最大时,求直线的方程.