已知抛物线 C : y = 2 x 2 ,直线 y = k x + 2 交 C 于 A , B 两点, M 是线段 A B 的中点,过 M 作 x 轴的垂线交 C 于点 N . (Ⅰ)证明:抛物线 C 在点 N 处的切线与 A B 平行; (Ⅱ)是否存在实数 k 使 N A ⇀ · N B ⇀ = 0 ,求 k 的值;若不存在,说明理由.
(本小题满分16分)设函数f(x)=.(1)m=2时,求f(x)在区间上的最大值;(2)若对任意b>a>0,恒成立,求实数m的取值范围。(3)讨论函数g(x)=零点的个数;
(本小题满分16分)已知:(,n为常数).(1)求;(2)我们知道二项式的展开式.若该等式两边对x求导得:=,令x=1,可得=.利用此方法解答以下问题:①求;②求.
(本小题满分16分)袋中有大小相同的三个球,编号分别为1,2,3.从袋中每次取出一个球,若取到的球的编号为2,则把该球编号记下再把编号数改为1后放回袋中继续取球;若取到球的编号为奇数,则取球停止,取球停止后用X表示“所有被取球的编号之和”。 (1)求X的概率分布; (2)求X的数学期望及方差.
(本小题满分14分)已知的展开式中,各项系数和比它的二项式系数和大992,(1)求n值; (2)求展开式中系数最大项。
(本小题满分14分)将四个编号为1,2,3,4的相同小球放入编号为1,2,3,4的四个盒子中,(1)若每个盒子放一个小球,求有多少种放法;(2)若每个盒子放一球,求恰有1个盒子的号码与小球的号码相同的放法种数;(3)求恰有一个空盒子的放法种数。