如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为,点M的横坐标为.(1)求椭圆C的标准方程;(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.
求关于x的方程x2-mx+3m-2=0的两根均大于1的充要条件.
证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.
写出下列命题的否命题,并判断原命题及否命题的真假: (1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等; (2)矩形的对角线互相平分且相等; (3)相似三角形一定是全等三角形.
已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.
指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答). (1)在△ABC中,p:∠A=∠B,q:sinA=sinB; (2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6; (3)非空集合A、B中,p:x∈A∪B,q:x∈B; (4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0.