已知向量 m = ( sin A , cos A ) , n = ( 3 , - 1 ) , m · n = 1 ,且 A 为锐角。 (Ⅰ)求角 A 的大小;
(Ⅱ)求函数 f ( x ) = = cos 2 x + 4 cos A sin x ( x ∈ R ) 的值域。
已知函数.(I)当时取得极小值,求、的值;(II)当时,若在区间上至少存在一点,使得成立,求实数 的取值范围.
已知抛物线与过点的直线相交于两点,为原点.若和的斜率之和为1,(1)求直线的方程; (2)求的面积.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1) 求的值;(2) 若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.(利润=销售额-成本)
椭圆方程为,过点的直线交椭圆于为坐标原点,点满足,当绕点旋转时,求动点的轨迹方程.
设关于的不等式,的解集是,函数 的定义域为.若“或”为真,“且”为假,求的取值范围.