已知复数均为实数,为虚数单位,且对于任意复数。(1)试求的值,并分别写出和用、表示的关系式;(2)将(、)作为点的坐标,(、)作为点的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点变到这一平面上的点,当点在直线上移动时,试求点经该变换后得到的点的轨迹方程;(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。
在平面直角坐标系中,曲线C1的参数方程为, (为参数),曲线C2的参数方程为(,为参数),在以O为极点,轴的正半轴为极轴的极坐标系中,射线与C1,C2各有一个交点.当时, 这两个交点间的距离为,当时,这两个交点重合. (1)分别说明C1,C2是什么曲线,并求出a与b的值; (2)设当时,l与C1,C2的交点分别为A1,B1,当时,l与C1,C2的交点 分别为A2,B2,求四边形A1A2B2B1的面积.
如图,在圆内画条线段,将圆分割成两部分;画条相交线段,彼此分割成条线段,将圆分割成部分;画条线段,彼此最多分割成条线段,将圆最多分割成部分;画条线段,彼此最多分割成条线段,将圆最多分割成部分. (1)猜想:圆内两两相交的条线段,彼此最多分割成多少条线段? (2)记在圆内画条线段,将圆最多分割成部分,归纳出与的关系. (3)猜想数列的通项公式,根据与的关系及数列的知识,证明你的猜想是否成立.
设命题:,其中,命题:, (1)若,且为真,求实数的取值范围; (2)若是的充分不必要条件,求实数的取值范围.
已知,求证:关于的三个方程,,中至少有一个方程有实数根.
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中各抽出500件,量其内径尺寸,的结果如下表: 甲厂: (1)试分别估计两个分厂生产的零件的优质品率; (2)由于以上统计数据填下面列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”。
附:,.