如图,在平面直角坐标系 x O y 中,以 o x 轴为始边做两个锐角 α , β ,它们的终边分别与单位圆相交于 A , B 两点,已知 A , B 的横坐标分别为 2 10 , 2 5 5 .
(1)求 tan ( α + β ) 的值;
(2)求 α + 2 β 的值.
已知 的内角A、B、C所对的边为, , ,且与所成角为.(Ⅰ)求角B的大小(Ⅱ)求的取值范围.
设是公差大于零的等差数列,已知,.(Ⅰ)求的通项公式;(Ⅱ)设是以函数的最小正周期为首项,以为公比的等比数列,求数列的前项和.
设是各项均为非零实数的数列的前项和,给出如下两个命题上:命题:是等差数列;命题:等式对任意()恒成立,其中是常数。⑴若是的充分条件,求的值;⑵对于⑴中的与,问是否为的必要条件,请说明理由;⑶若为真命题,对于给定的正整数()和正数M,数列满足条件,试求的最大值。
设函数(,)。⑴若,求在上的最大值和最小值;⑵若对任意,都有,求的取值范围;⑶若在上的最大值为,求的值。
如图,圆O与离心率为的椭圆T:()相切于点M。⑴求椭圆T与圆O的方程;⑵过点M引两条互相垂直的两直线、与两曲线分别交于点A、C与点B、D(均不重合)。①若P为椭圆上任一点,记点P到两直线的距离分别为、,求的最大值;②若,求与的方程。