(本小题满分13分)已知定义在R上的函数(a,b,c,d为实常数)的图象关于原点对称,且当x=1时f(x)取得极值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)证明:对任意∈[-1,1],不等式成立;(Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.
若等比数列{}的前n项和为,已知对任意的,点,均在函数(为常数)的图像上. (1)求和的值; (2)记,求数列的前项和
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。 (1)求证:CE⊥平面PAD; (2)若PA=AB=1,AD=3,CD= ,∠CDA=45°,求四棱锥P-ABCD的体积
.已知等差数列满足:数列的前n项和为. (1)求及; (2)令,求数列的前n项和.
如图,在四棱锥中,,四边形为平行四边形,,, (1)若为中点,求证:∥平面 (2)求三棱锥的体积
已知函数 (1)若,且,求的值; (2)求函数的最小正周期及单调递增区间.