已知数列{a}中,a=2,前n项和为S,且S=.(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值
设x、y∈R,求的最小值.
求函数y=+的最大值.
用数学归纳法证明:当n是不小于5的自然数时,总有2n>n2成立.
若实数x、y、z满足x+2y+3z=a(a为常数),求x2+y2+z2的最小值.
求证: