如图,正三角形ABC的边长为2,D、E、F分别为各边的中点将△ABC沿DE、EF、DF折叠,使A、B、C三点重合,构成三棱锥A— DEF .(I)求平面ADE与底面DEF所成二面角的余弦值(Ⅱ)设点M、N分别在AD、EF上, (λ>O,λ为变量)①当λ为何值时,MN为异面直线AD与EF的公垂线段? 请证明你的结论②设异面直线MN与AE所成的角为a,异面直线MN与DF所成的角为β,试求a+β 的值
命题p:函数有零点; 命题q:函数是增函数, 若命题是真命题,求实数的取值范围.
设函数. (1)若,试求函数的单调区间; (2)过坐标原点作曲线的切线,证明:切点的横坐标为1; (3)令,若函数在区间(0,1]上是减函数,求的取值范围.
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B. (1)求椭圆C的标准方程; (2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{an}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上. (Ⅰ)求数列{an},{bn}的通项公式an和bn; (Ⅱ)设cn=an•bn,求数列{cn}的前n项和Tn
如图,在长方体,中,,点在棱AB上移动. (1 )证明:; (2)当为的中点时,求点到面的距离; (3)等于何值时,二面角的大小为.