(本小题满分12分)已知函数(1)判断的奇偶性,并证明你的结论;(2)证明:函数在内是增函数
(本小题满分12分) 已知函数 (I)证明:函数; (II)设函数在(—1,1)上单调递增,求a的取值范围。
(本小题满分13分) 如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。 (I)求棱PB的长; (II)求二面角P—AB—C的大小。
(本小题满分12分) 象棋比赛中,胜一局得2分,负一局得0分,和棋一局得1分,在甲对乙的每局比赛中,甲胜、负、和的概率依次为0.5,0.3,0.2.现此二人进行两局比赛,得分累加。 (I)求甲得2分的概率; (II)记甲得分为的分布列和期望。
(本小题满分10分) 已知函数 (I)求函数的最小正周期; (II)求函数上的最大值与最小值。
(本小题满分14分) 已知向量, 向量, 且, 动点的轨迹为E. (1)求轨迹E的方程; (2)证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B, 且(O为坐标原点),并求出该圆的方程;