(本小题满分12分)已知函数,且函数的图象关于原点对称,其图象在处的切线方程为 (1)求的解析式; (2)是否存在区间使得函数的定义域和值域均为,且其解析式为f(x)的解析式?若存在,求出这样的一个区间[m,n];若不存在,则说明理由.
(本小题满分12分)已知函数,(1)若,求的单调区间;(2)当时,求证:.
(本小题满分12分)已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.(1)当直线过点时,求直线的方程;(2)当时,求菱形面积的最大值.
(本小题满分12分)如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为的菱形,∠ACC1为锐角,侧面ABB1A1⊥侧面AA1C1C,且A1B=AB=AC=1.(1)求证:AA1⊥BC1;(2) 求三棱锥A1-ABC的体积.
(本小题满分12分)在△ABC中,内角对边的边长分别是,已知,.(1)若△ABC的面积等于,求;(2)若,求△ABC的面积.
(本小题满分12分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示.若130~140分数段的人数为2人.(1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的中位数;(3)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.