已知数列的前项和为,,(为正整数). (1)求数列的通项公式; (2)记,若对任意正整数,恒成立,求的取值范围? (3)已知集合,若以a为首项,a为公比的等比数列前n项和记为,问是否存在实数a使得对于任意的.若存在,求出a的取值范围;若不存在,说明理由.
已知函数. (1)求的最小正周期; (2)求在区间上的最大值和最小值. (3)若g(x)=f(),求函数g(x)的单调增区间;
已知函数(且) (1)若函数在上的最大值与最小值的和为2,求的值; (2)将函数图象上所有的点向左平移2个单位长度,再向下平移1个单位长度,得到函数的图象,写函数的解析式; (3)若(2)中平移后所得的函数的图象不经过第二象限,求的取值范围.
设集合{x},, (1)求; (2)若,求的取值范围。
若(4,3)是角α终边上一点,求的值.
已知函数f(x)=(b<0)的值域是[1,3], (1)求b、c的值; (2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论; (3)若t∈R,求证:lg≤F(|t-|-|t+|)≤lg.