设f(x)=(Ⅰ)讨论f(x)的奇偶性,并说明理由;(Ⅱ)当a=2,求f(x)的极值.
如图,已知, 四边形是梯形,∥, ,, 中点。 (1)求证:∥平面; (2)求异面直线与所成角的余弦值。
设,解关于的不等式。
围建一个面积为360㎡的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示。已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为(单位:m), 修建此矩形场地围墙的总费用为(单位:元)。 (1)将表示为的函数; (2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知的内角所对的边分别为,且,, (1)若,求的值; (2)若的面积, 求的值。
记等比数列的前项和为,已知,, 求数列的通项公式。